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Summary
The term Bartter syndrome denotes a group of renal possible modes of inheritance. This improved under-

standing has opened new avenues for therapy,diseases which share a common denominator of
hypokalaemia and metabolic alkalosis. The patch- improving mortality and morbidity in these patients.

Another group of illnesses, the ‘pseudo-Bartterclamp technique has made possible the analysis of
single ion channels, improving our understanding of syndrome’, may produce a hypokalaemic metabolic

alkalosis without primary renal disease. The under-the molecular physiopathology of all the ’Bartter-
like’ syndromes. Genetic mapping of each defect lying illness needs to be identified and treated.
has further clarified the mutations involved and the

Introduction
In 1962, Frederic Bartter and his colleagues wrote syndrome. We address the clinical and pathological

aspects, and the genetics, of each of the above intheir seminal paper1 based on two patients with
detail, hoping to clarify the path to early diagnosishypokalaemic metabolic alkalosis, hyperaldostero-
and appropriate treatment.nism, normal blood pressure, decreased pressor

responsiveness to angiotensin II infusion and
hyperplasia of the juxtaglomerular apparatus.
Subsequently, a wide variety of hypokalaemic meta- Antenatal Bartter syndrome
bolic alkalotic states, with different clinical and

(hyperprostaglandin E2 syndrome)laboratory findings as well as age-related presenta-
tions, have been reported, leading to confusing The signs and symptoms of antenatal Bartter
variations in nomenclature. Terms such as Bartter- Syndrome may be present and identifiable in
like syndrome do little to help the clinician identify utero.2,5,9,11,14,22 Unexplained polyhydramnios
the specific metabolic defect and treat the patient’s between 24 and 36 weeks of gestation is a well-
illness correctly. It may be better to sub-classify documented early sign of this syndrome according
Bartter syndrome by renal pathophysiological abnor- to most investigators.2,14,51 Another important finding
mality. By this method, Bartter syndrome falls into at this stage is biochemical abnormality of the
four subgroups: (i) antenatal Bartter syndrome (hyper- amniotic fluid, with normal sodium, potassium and
prostaglandin E2 syndrome); (ii) the Gitleman variety prostaglandin levels, but consistently elevated chlor-
of Bartter syndrome (Gitleman syndrome); (iii) clas- ide levels.2–5 The infants are usually born prema-

turely.2,30 After birth, the most important clinicalsical Bartter syndrome; and (iv) pseudo-Bartter
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finding is hyposthenuria (urine of low specific gravity) is relevant to Na+, K+, and Cl−, and will impair
their absorption. This will have a secondary effectand rapid weight loss.2,5 Lethargy and poor feeding

often develop. In the first week of life, laboratory on the osmolality of the peritubular space and
subsequently reduce the movement of water frominvestigation shows a metabolic alkalosis associated

with hypokalaemia. The urine has low specific the descending limb of the loop of Henle in the
direction of the tubular space to the interstitium. Thegravity with very high sodium, chloride and calcium

levels, while potassium is normal.2 However, after final result of such a phenomena is the flooding of
the distal tubule with diluted urine with a high1–3 weeks, the level of potassium in the urine rises

to considerably above normal, with relatively less content of Na+, K+, Cl− and Ca2+.
In the thick ascending loop of Henle,sodium than in the first week of life.2 Prostaglandin

levels are high, both in blood and in urine.2,8–10 Na+-K+-2CI− (site 1, Figure 1) in the form of an
electroneutral cotransport passes through the apicalHyperprostaglandin E2 is a secondary phenomenon

due to fluid and electrolyte loss, and will be sup- membrane of the tubule into the tubular cell.19–21 At
the basolateral cell membrane are the Na+-K+pressed by appropriate fluid and electrolyte replace-

ment over a period of time.2 Therefore, calling this pumps which, when active, pump sodium out of the
cell into the interstitium and then the blood, andentity hyperprostaglandin E2 syndrome8 rather than

antenatal Bartter syndrome seems inappropriate, potassium from the interstitium into the cell.27–29 The
function of these pumps is an active process usingsince the hyperprostaglandism is secondary to the

basic pathology.2,23 Levels of renin and aldosterone ATP, and they are thus called Na+-K+ ATPase pumps
are also very high, and important in establishing the
diagnosis.2,10–12 Untreated infants will fail to thrive,
and may die in a few days as a result of dehydration,
poor feeding and/or severe electrolyte disturbance.
Mild mental retardation has been observed in some
children with this disease; however, we have not
encountered such retardation in our infant patients
who were diagnosed and treated early, and the
putative brain insult may therefore be linked to delay
in diagnosis and treatment. There are also reports of
special facial features, such as a triangular face
characterized by prominent forehead, large eyes,
protruding ears and drooping mouth.16,17,31

Strabismus may also be present.17 There are now
reports of sensorineural deafness in a Bedouin
family16 and also in one from Costa Rica.17

Pathophysiology of antenatal Bartter
syndrome

The pathophysiology of antenatal Bartter syndrome
can only be explained if one first looks at the renal
handling of sodium, potassium and chloride at the
nephron level. Filtration of electrolytes in the glomer-
uli is complete: the concentration of Na+, K+, Cl−,
HCO

3
−, Ca2+ (ionized calcium comprising 60% of

total serum Ca) and other electrolytes in the
Bowman’s capsule is the same as in whole blood.18,19

At the level of the proximal tubule, 67% of filtered
Na+ and K+ is reabsorbed, while at the level of the
thick ascending limb of loop of Henle, 20% of

Figure 1. Transport sites in the thick ascending limb offiltered Na+ and K+ is reabsorbed. Reabsorption of
the loop of Henle. (1) Electroneutral Na+,K+,2Cl−Cl− in this segment is closely related to that of K+ cotransport in the apical membrane. (2) K+ channel (Rat

and Na+. The proximal tubule and thick ascending outer medulla potassium channel) in the apical and the
limb of loop of Henle reabsorb 90% of filtered Ca2+. basolateral cell membrane. (3) Na+/K+-ATPase pump in
Reabsorption of Ca2+ is a passive process and is the basolateral cell membrane. (4) K+/Cl− cotransporter
coupled to Na+ reabsorption. Any defect in the in the basolateral cell membrane. (5) Cl−channel (CIC-Kb)

in the basolateral cell membrane. (6) Intercellular space.normal function of the thick ascending loop of Henle
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(site 3, Figure 1). Intracellular K+ needs to move cotransport (NKCC2) in apical cell membranes (site 1,
Figure 1) has been identified by Simon et al. in 1996out of the cell to the blood as well as into

the luminar space. Movement of potassium into the on chromosome 15q15-21.37 Six independent muta-
tions were identified in their patients with antenatalluminar space is of the utmost importance for the

process of reabsorption of 20% of the filtered Na Bartter syndrome.
Genetic study of another group of patients with(140 meq/l) which takes place in this segment of the

loop of Henle. Each molecule of Na+ requires one antenatal Bartter syndrome with a normal gene for
Na+-K+-2CI− cotransport revealed a mutation inmolecule of K+ in the electroneutral passage through

the luminal membrane in the form of Na+-K+-2CI−. the gene involving K+ channels.39–41 The locus of
the gene responsible for these inwardly rectifying K+Only 20% of filtered K+ (5 meq/1) is reabsorbed in

the thick ascending loop of Henle. This will not provide channels (ROMK) (site 2, Figure 1) was identified in
chromosome 11q24-25.40,41 Here again eleven inde-the necessary K+ ions4,25,26 for reabsorption of sodium.

The passage and movement of K+ ions takes place pendent mutations were mapped, indicating genetic
heterogenicity.39 Study of familial cases of antenatalthrough channels known as K+ channels (site 2,

Figure 1) or ROMK (rat outer medulla K+ channel). Bartter syndrome revealed a definite autosomal
recessive pattern.Their opening and closure are under the control of the

Ca2+ content of the cell and its ATP level. When the Defects in either Na+-K+-2CI− cotransport or K+
channels will result in malreabsorption of Na+, K+,Na+-K+ ATPase pump (site 3, Figure 1) becomes

active, cell ATP falls, and this opens the potassium Cl−, and Ca2+ in the thick ascending limb of loop
of Henle primarily, with subsequent reabsorption ofchannels, facilitating movement of K+ from the

intracellular space to the lumen as well as into the H
2
O in the descending loop of Henle. The result of

such a defect will be the delivery of large volumesinterstitium. Movement of K+ from the intracellular
space into the intraluminal space provides the potas- of urine with a high content of Na+, K+, Cl− and

Ca2+ to the distal tubule. In the distal tubule, partsium molecules necessary for Na+-K+-2CI− cotrans-
port and subsequent absorption of Na+ and Cl− from of the delivered Na+ will be reabsorbed in exchange

for intracellular K+. By this action, partial butthe luminal space of the thick ascending loop of Henle.
Thus recirculation of K+ through the potassium incomplete concentration of the intraluminal fluid

will be accomplished, while more potassium wastingchannels facilitates electroneutral movement of
Na+-K+-2CI− through the apical cell membrane. becomes evident. However, this impaired sodium

absorption in the thick ascending limp of loop ofPositive potential of the lumen also acts as a driving
force for the passage of K+ and Na+ through the Henle will result in increased levels of prostaglandin

E2.38,89,91 This interrelation has been documented inparacellular pathways (intercellular spaces) into the
blood (site 6, Figure 1). Calcium and magnesium also normal individuals using loop diuretics.38 Increased

prostaglandin E2 levels will exacerbate the primarypass through these paracellular spaces (site 6, Figure 1).
Passage of Cl− from the cell into the interstitium can defect of chloride transport in the thick ascending

loop of Henle which will: (i) stimulate the renin-take place through kidney-specific chloride channels
(CIC-Kb) (site 5, Figure 1), and via K+/Cl− cotransport angiotensin-aldosterone axis causing hypokalemia

due to increased aldosterone activity; (ii) impedesystem (site 4, Figure 1). In the apical membrane, there
is also an exchange of Na+/H+. This is summarized ROMK channel activity and hence decrease NaCl

transport; and (iii) impede H
2
O reabsorption in theschematically in Figure 1.

Thus the handling of chloride ions by the thick collecting ducts due to a secondary effect on vaso-
pressin activity, resulting in hyposthenuria.ascending loop of Henle is an intimate part of the

normal function of Na+-K+-2CI− electroneutral Volume contraction will activate the renin-
aldosterone axis. This can be seen by the high levelscotransport, as well as K+ channels (ROMK) and Cl−

channels (CIC-Kb). In other words, defects in Cl− of both renin and aldosterone in both blood and
urine of patients with antenatal Bartter syndrome.transport may result from any loss or altered function

of Na+-K+-2CI− cotransporter and/or K+ channels, The action of aldosterone in the distal tubule is two-
fold. First, the increased movement of Na+ from theas well as chloride channels. However, no defect in

chloride channels has been identified which relates to luminal space intracellularly in exchange for
intracellular K+ via the principal cells of the latethe pathogenesis of antenatal Bartter syndrome. The

long-term use of loop diuretics such as frusemide distal tubule and the collecting duct, hence en-
hancing potassium wasting. This is accomplished byproduces electrolyte blood and urine changes resem-

bling those of antenatal Bartter syndrome,33,34,38,46 and increasing the activity of the Na+-K+ ATPase pumps
at the basolateral cell membrane (site 3, Figure 1),this is an example of altered function. Loss of function

can result from mutations in any of the genes encoding which pump Na+ out of the tubular cell into
interstitium and K+ into the cell from the interstitium.either the Na+-K+-2Cl− cotransporter or K+ channels.

The locus of the gene responsible for Na+-K+-2CI− This increases intracellular K+, creating more of a
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K+ concentration gradient with respect to the lumen, diuretics in an otherwise normal individual. NaCl
wasting in this part of the distal nephron will leadand henceforth more loss of K+ into the lumen

through the apical membrane and finally into the to mild hypovolaemia, and stimulation of the renin-
angiotensin axis.4 Simon et al.58 showed that thereurine. Secondly, aldosterone stimulates the intercal-

ated cells of the late distal tubule and collecting is a complete linkage of Gitleman syndrome to the
locus encoding the renal thiazide sensitive Na+-Cl−duct to exchange intracellular H+ for intraluminal

K+, with subsequent exaggeration of the metabolic cotransporter on chromosome 16q13, with an
autosomal recessive pattern and a 99% penetrance.67alkalosis due to H+ loss.

The next question to be answered is why these Mutant alleles in this disease have been reported by
Simon and others.58,66–68 The late distal tubule andpatients, who have high levels of renin and angio-

tensin, do not develop high blood pressure? Could collecting duct have two kinds of cells, each with
special feature and function. Principal cells reabsorbthis be due to non-responsiveness of their blood

vessels to angiotensin as suggested by Bartter (end- Na+ and H
2
O (site 1, Figure 3) and secrete K+ (site

2, Figure 3). Aldosterone acts on principal cells toorgan failure)? It has now been demonstrated that
patients with Bartter syndrome will show a normal increase Na+ reabsorption and increase K+ secre-

tion. Intercalated cells secrete H+ ions in exchangeresponse to vasopressor agents once their volume is
restored to normal.2 for reabsorption of K+ ions (site 4, Figure 3).

Aldosterone increases H+ ion secretion by inter-Another equally important finding in antenatal
Bartter syndrome is hypercalciuria. The cause of calated cells.

Impairment of Na+-Cl− cotransport in the earlycalcium loss has already been described. Such a
continuous loss of calcium results in nephrocalcinosis part of the distal tubule results in excessive amounts

of Na+ ion in the late distal tubule. Maximaland secondary renal impairment in many of these
patients.49–51 Indeed, calcium deposits in the kidney reabsorption of Na+ and H

2
O and maximal secretion

of K+ ion by the principal cells takes place in thisof these patients can be picked up by either ultra-
sonographic examination of the kidneys as early as segment.19,20 At the same time, H+ is excreted by
2 months10 or simple abdominal X-ray.

Gitleman syndrome
This phenotype of Bartter syndrome is characterized
by a milder course than in the antenatal variety.
Onset is late, usually after the age of 20 years.
Patients present with fatigue, muscle weakness and
recurrent episodes of tetany.24,53,54,56,57 Biochemi-
cally, there is metabolic alkalosis, (serum bicarbonate
>29 meq/1) profound hypokalaemia, (serum
potassium<3 meq/l; normal>3.5 meq/1) hypomag-
nesaemia (serum magnesium <0.5 meq/l; normal
0.8–1.0 meq/1) and hypocalciuria, (urinary calcium
<2 mg/kg per day; normal 2–7 mg/kg per day).53–55

Urinary concentrating ability in this disease is mildly
impaired.

Pathophysiology of Gitleman syndrome

The basic pathology in this disease is an impaired
Na-Cl cotransporter in the distal nephron. Distal
tubule and collecting duct together reabsorb about

Figure 2. Transport sites in the early distal tubule. (1)12% of the filtered Na+. The early distal tubule, Electroneutral Na+, Cl− cotransport in the apical mem-
also called the cortical diluting segment, is the site brane. (2) K+ channel (Rat outer medulla potassium
of absorption of NaCl by Na+-Cl− cotransport channel) in the apical and the basolateral cell membrane.
(NCCT) (site 1, Figure 2) and is the site of action of (3) Na+/K+-ATPase pump in the basolateral cell mem-
thiazide diuretics.42,43,55 A similar biochemical abnor- brane. (4) K+/Cl− cotransporter in the basolateral cell

membrane. (5) Intercellular space.mality can be seen in long-term use of thiazide
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no tetany. Symptoms may include polyuria, polydip-
sia, vomiting, constipation, salt craving, and a tend-
ency to dehydration.4 Failure to thrive and growth
retardation follows if treatment is not initiated.
However the normal adult height usually achieved
by untreated individuals is due to a delayed adoles-
cent growth spurt. They have hypokalaemic
metabolic alkalosis1 and their urinary Ca2+ is either
normal or slightly elevated, with the urine concentra-
tion being almost normal.

Pathophysiology of classical Bartter
syndrome

The biochemical abnormalities of classical Bartter
syndrome are all suggestive of a defect related to
Cl− transport in the medullary thick ascending loop
of Henle. However, the precise pathway involved
is not yet clear. The familial cases of classical
Bartter syndrome are inherited as an autosomal
recessive entity. A group of patients with this
phenotype all had either a large deletion or
nonsense, missense, or splice mutations of the gene

Figure 3. Transport sites in the late distal tubule with two (CIC-Kb, chromosome 1p36) encoding the renal
kind of cells. (Principal cell and intercalated cell). (1) chloride channels of the basolateral cell membrane
Na+ channel. (2) K+ channel (Rat outer medulla potas- (site 5, Figure 1).4,70–74 However, in some patients
sium channel) in the apical and the basolateral cell

with classical Bartter syndrome, no abnormality inmembrane. (3) Na+/K+-ATPase pump in the basolateral
this gene could be identified. It has therefore beencell membrane. (4) Site of K+/H+ (H+-ATPase) exchange
suggested that NaCl transport in the ascending loopin the intercalated cell.
of Henle (and the relevant gene/s) may also be
involved.4intercalated cells and this, together with impaired

Cl− reabsorption in the early distal tubule, results in
metabolic alkalosis. The reason for hypocalciuria, as

Pseudo-Bartter syndromewell as hypomagnesaemia, is not clear. The available
literature attributes the high intake of Ca2+ in distal Biochemical abnormalities similar to those found in
tubule and hence hypocalciuria to (a) decreased Bartter syndrome, i.e. hypokalemic metabolic alkal-
apical Na+ uptake driving basolateral Na+/Ca2+ osis, are also encountered in another group ofexchange with subsequent increase of Ca2+ uptake

patients with no pathology in the renal tubules. Itat the apical membrane level and (b) decreased
is therefore very important to identify any otherintracellular Cl− content increasing the polarity of
cause that may produce such a metabolic derange-the apical cell membrane, which stimulates Ca2+
ment. The list of such conditions includes: cysticuptake.4,60,61 Hypomagnesaemia in Gitleman syn-
fibrosis,75 surreptitious diuretic use,34,93 chronicdrome is perhaps due to magnesium wasting in distal
administration of a chloride-deficient diet, bulimia,convoluted tubules of the nephron due to inhibition
cyclic vomiting, congenital chloridorrhea, and abuseof Mg2+ uptake in the presence of hypokalaemia.62–65
of laxatives.4 In all of these conditions, exceptIt has also been suggested that the metabolic alkalosis
diuretic use, the chloride content of urine will bemay be an important cause of hypomagnesaemia by
low, and this is contrary to all forms of Bartterincreasing the resistance of distal tubular cells to
syndrome. In the case of long use of diuretics,Mg2+ uptake.4,63 With low Mg2+ levels in the blood,
appropriate drug history and demonstration of themagnesium wasting has been observed in patients
diuretic in the urine will establish the diagnosis.46,72with Gitleman syndrome, indicating a too-low renal

Mg2+ threshold.4,64

Treatment of Bartter syndrome
Classical Bartter syndrome The therapeutic management of Bartter syndrome is

composed of two major aspects: (i) replacementClassical Bartter syndrome is characterized by early
childhood onset. The patients fail to thrive but have therapy and (ii) use of drugs. With this in mind, the
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treatment of each variety of Bartter syndrome will has been reported to cause renal failure and hyper-
kalaemia within 3 days with rapid restoration ofbe discussed separately.
glomerular function upon discontinuation of
indomethacin.10 A small dose of 0.2 mg/kg/day ofTreatment of antenatal Bartter syndrome
indomethacin may be sufficient to keep the salt
requirement and diuresis almost within the normalThe paramount replacement therapy in the immedi-

ate neonatal period should be directed towards the range but with an insufficient effect on hypercalciuria
and subsequent nephrocalcinosis.10 Use of indometh-correction of fluid and electrolyte imbalance. Fluid

loss may surpass 500 ml/kg/day, with very large loss acin in a pregnant woman with a suspected fetus
with Bartter syndrome has many hazards to the fetus,of Na+ (up to 45 meq/kg/day) and Cl− in the urine.

This will require infusion of large amounts of saline such as negative effects on the ductus-arteriosus and
the developing kidney, and no benefit for intra-to prevent weight loss and dehydration, and to keep

levels of sodium and chloride within the normal uterine control of the disease, since there is no
hyperprostaglandinism in the unborn fetus.2 It mustrange. Due to low urinary potassium loss in the first

2–3 weeks of life, potassium replacement only be emphasized that indomethacin does not correct
the primary chloride reabsorption defect of thebecomes necessary after this period.2 Oral replace-

ment therapy with KCI and NaCl in the form of 15% kidney. There is also a report of spontaneous recovery
in a case of antenatal Bartter syndrome after a periodsolution, follows the initial intravenous infusion

therapy. These oral replacement solutions are given of treatment.81

in divided doses three to four times a day. The dose
is individually titrated to correct the patient’s need. Treatment of Gitleman syndrome

In terms of medication in antenatal Bartter syn-
drome, one may be tempted to use potassium-sparing Replacement therapy is the main treatment for

Gitleman syndrome, which means magnesiumdiuretics with the notion of reducing potassium loss.
Use of medication, such as spironolactone, helps to supplementation throughout life. Administration of

magnesium in the form of MgCl
2

partially correctsimprove the overall general condition,2,45 but will
further increase the hypercalciuria and subsequent hypomagnesaemia and hence prevents the appear-

ance of tetany as well as compensating for ongoingnephrocalcinosis. There is no long-term experience
with other potassium-sparing diuretics such as amilo- chloride losses by the kidney.4 Acid-base status,

urinary Ca excretion and renin-angiotensin axis areride. Neutralizing the amplification effect of prosta-
glandins on the features of Bartter syndrome has all corrected. Also correction of hypokalaemia may

occasionally require the addition of potassium saltslong been the main line of drug therapy of this
syndrome. Prostaglandin synthetase inhibitors are the and/or anti-aldosterone drugs such as spironolactone

or amiloride.86main group of drugs recommended in this respect.
Among the very many prostaglandin synthetase inhib-
itors, indomethacin is the most widely used.2,4,10,79,87 Treatment of classical Bartter syndrome
Indomethacin decreases salt wasting and the degree
of hypokalaemic alkalosis, and also partially cor- The primary aim of the treatment of this phenotype

of Bartter syndrome is correction of hypokalaemiarects the impaired urine concentrating ability.
Indomethacin is known to cause necrotizing entero- and alkalosis. Therefore administration of potassium

chloride is always necessary. The dose of KClcolitis in premature infants as well as a severe
reduction in glomerular filtration rate.10,52,59 Decrease supplementation should individually be titrated in

accordance to the patient’s needs and must balanceof glomerular filtration rate due to use of indometh-
acin is a reversible process10 and is dose-dependent. the amount lost by the kidney. However, this mode

of supplementation therapy is almost totally ineffect-It is therefore recommended that indomethacin
should either not be used in premature infants, or ive by itself, since administered potassium is lost

through the kidney in a short period of time.4its use delayed by perhaps 4–6 weeks after birth.
Infants receiving indomethacin should be closely It may seem logical that potassium-sparing agents

such as spironolactone or triamterine would be anobserved for any sign of enterocolitis, and when
present, therapy of enterocolitis should be initiated effective additive to supplementation therapy at this

stage. Indeed these groups of medication offer anpromptly which will include stopping of indometh-
acin. The recommended dose of indomethacin is effective but transient control of hypokalaemia.4

Addition of beta-adrenergic inhibitors, such as pro-1.5–2.5 mg/kg/day in two or three divided doses.2
However, higher doses of up to 5 mg/kg/day have pranolol, is of no extra benefit. The most beneficial

group of medication in treatment of classical Bartteralso been used, bearing in mind that doses above
3 mg/kg/day are considered nephrotoxic.2 syndrome is the prostaglandin synthetase inhibitors.

Indomethacin (2–5 mg/kg/day), acetylsalicylic acidAn initial dose of 1 mg/kg/day in a week-old infant
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