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Summary
We review current concepts regarding the genetic, unclear, and individuals with low or null concentra-

tions of plasma lipoprotein(a) manifest no deficiencystructural and metabolic features of lipoprotein(a),
a major inherited cardiovascular pathogen. Although syndrome or disease. The integration of recent dis-

coveries about the structure and metabolism of thislipoprotein(a) is almost completely confined to a
subset of primates, the hedgehog produces a unique lipoprotein particle has allowed the formula-

tion of some hypotheses concerning the evolutionarylipoprotein(a)-like complex, which appears to have
evolved independently from that of humans. The advantages of synthesizing lipoprotein(a)-like par-

ticles.physiological role of lipoprotein(a) in humans is still

Structure and metabolism of
lipoprotein(a)
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein which is processed into the mature form and then

secreted into the blood stream.7 Rapidly after secre-(LDL)-like particle formed by the association of the
highly polymorphic glycosylated apolipoprotein(a) tion, free apo(a) binds to circulating LDLs to generate

complete Lp(a) particles.8 The assembly of Lp(a)(apo(a)) with apolipoprotein B100 (apo B100), the
classic protein moiety of LDL.1 In assembled Lp(a) occurs almost exclusively extracellularly, as no

apo(a)-apoB100 complexes can be detected withinlipoprotein particles, apo(a) is attached to apo B100
through a single disulphide link between apo B100 cells.7 From the composition and physicochemical

properties of Lp(a-), the lipoprotein remnant derivedCys 3734 and apo(a) kringle IV type 9 Cys67;2
additional non-covalent interactions play accessory after dissociation of apo(a) from Lp(a) by chemical

reduction, Lp(a) can be reasonably considered aroles in promoting, mediating and reinforcing the
association between the apolipoproteins.3,4 Under genetically-determined variant of LDL, increased in

density and size (Table 1).9 Lp(a) belongs to themicroscopic analysis of Lp(a) particles, apo(a)
assumes a belt-like structure; both apo(a) ends are heterogeneous family of cholesterol-enriched lipo-

proteins: cholesterol, in either free or esterified form,attached at two distant sites to a spherical LDL.5
Although apo(a) transcripts have recently been represents almost 40% of its total mass. The relative

weight of phospholipids (17–24%) is comparable tofound in adrenal glands, lungs, pituitary, brain and
testes,6 circulating apo(a) is mainly synthesized by that of proteins (17–29%), whereas the triglyceride

content is rather limited, usually below 9%.9–14the liver as a precursor with lower molecular mass
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Table 1 Main physicochemical properties and composition of LDL, Lp(a) and Lp(a-)9–14

LDL Lp(a) Lp(a-)

Physicochemical properties
Molecular mass (Da) (2.9)×106 (3.8–4.0)×106 (3.2–3.3)×106

Diameter (nm) 25.9±0.1 28.3±0.5 26.1±0.1
Density (g/l) 1019–1063 1006–1125 1028
Half-life (days) 2–3 3–4 Unknown
Composition (%)
Protein 26–31 17–29 24
Free cholesterol 9 6–9 9
Esterified cholesterol 40–43 35–46 40–41
Triglycerides 4–6 4–8 5–6
Phospholipids 20–22 17–24 20

Almost 23% of the apo(a) mass is attributable to N- related genes, unlinked to the apo(a) gene cluster
and O-glycosides, producing the remarkable electro- and resident on chromosomes 2 and 4.22

negative potential of the Lp(a) lipoprotein particle.12 The apo(a) gene belongs to a puzzling gene family
Aside from the structural homology to LDL, Lp(a) that includes several similar sequences encoding

displays unique metabolic features. About 90% of prothrombin, tissue-type plasminogen activator
Lp(a) concentration is under genetic regulation. The (t-PA), urokinase A-chain, plasminogen, coagulation
greatest part of the variability in Lp(a) levels (over factor XII, macrophage stimulating factor, hepatocyte
40%) is accounted for by quantitative polymorphism growth factor and other proteins and polypeptides
in the internal sequence of the apo(a) gene; qualitat- of unclear function.23 Nucleotide analysis of human
ive polymorphisms in the sequence of the promoter genes encoding these proteins reveals that sequences
play only a minor role (from 10 to 14%).15 Despite of exons and relative boundaries differ only from 1
this genetic regulation, some metabolic abnormalities to 5%, and that the types of exon/intron junctions
may have effects on Lp(a) levels in plasma.16,17 and the positions of introns in the sequences are
Among these, the acute-phase response, hormonal almost identical. These data suggest that the genes
homeostasis, diabetes, liver and renal failure, and might have developed during recent primate evolu-
defects in the LDL-receptor gene have all been tion from a common ancestral component of the
shown to influence the still enigmatic metabolism of kringle-related serine proteases, most likely plasmin-
this lipoprotein. ogen, via duplication and exon shuffling.18,24 The

apo(a) gene shares the highest homologies with the
gene of the zymogen plasminogen; the sequence

The apo(a) gene cluster encoding for plasminogen kringle V domain is
retained, whereas the plasminogen kringle IV domainThe ability to synthesize apo(a) is confined to a
encoding sequence exists in multiple variable tandemrestricted group of primates; however, the insectivore
repeats. In contrast, apo(a) lacks the sequences ofhedgehog produces an apo(a)-like protein composed
plasminogen preactive region and plasminogen krin-of multiple tandem repeats of a plasminogen
gle domains I through III. Despite the strong genetickringle III homologous domain but lacking the pro-
homologies, a single point mutation in the sequencetease domain.18 Apo(a) sequence comparisons and
of the protease domain deprives apo(a) of most ofphylogenetic analysis indicate that human and
plasminogen’s enzymic properties. Sequencing ofhedgehog genes evolved independently from differ-
cloned human apo(a) complementary DNA revealedent sequences, providing a novel model of ‘conver-
that apo(a) contains 10 different kringle IV subtypes,gent’ molecular evolution.19
designed as types 1–10.25 The high quantitativeThe human apo(a) gene is located in a gene
polymorphism in the sequence encoding the plasmin-cluster within 400 kb of genomic DNA on the
ogen kingle IV type 2 domain explains the hightelomeric region of chromosome 6 (6q26-27),20,21

degree of individual allelic size polymorphism of theincluding the sequences encoding apo(a), plasmin-
protein as, to date, no fewer than 34 size allelesogen and other two pseudogenes with highly
have been identified in the apo(a) locus, encodinghomologous untranslated 5∞ flanking regions.22

as many detectable isoforms in plasma.26–27 The sizeHybridization analysis and reverse transcriptase poly-
of the apo(a) particle usually determines its ratemerase chain reaction have identified three addi-

tional homologues genes designated as plasminogen- of hepatic synthesis and secretion; null alleles,
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producing virtually no detectable circulating Lp(a), released from activated or senescent neutrophils,
enhances the binding of Lp(a) to endothelial cells bycan be frequently observed. The molecular basis of

these null alleles seems to be an in-frame 47-amino- approximately four-fold and to smooth muscle cells
by six-fold.36 Although it is not yet clear whetheracid deletion in the sequence of the protease domain

that hinders the correct splicing of mRNA and Lp(a) particles are internalized directly or instead by
prior extracellular degradation, the large amount ofgenerates a defective protein, irregularly subjected

to a sequence of intracellular rearrangements which cholesterol carried by the lipoprotein can easily be
extracted and used at the site of its accumulation.are essential for processing and secretion of complete

and functional particles.28 Among these, the trimming Lp(a) binds to several components of the vascular
wall and of the sub-endothelial matrix;37 this bindingof N-linked glucoses, which occurs after the folding

of the protein into the endoplasmic reticulum, is is partially mediated by the lysine binding sites (LBS)
of its apo(a) moiety.35 High affinity bindings tothought to be a critical process.29

Little is known about the two adjacent fibronectin, fibrinogen, glycosaminoglycans and
proteoglycans were observed in the presence ofapo(a)-related genes located on the apo(a) gene

cluster on chromosome 6q26-27, called apo(a)- Ca2+ and Mg2+ ions; further weaker interactions
were described with laminin and beta-2 glycoproteinrelated genes C and B, respectively. Although

apo(a)-related gene B appears to be substantially I, but no binding was observed to von Willebrand
factor, vitronectin or collagen type IV.37–39silent, a 132-amino-acid human liver transcript com-

posed of a secretion signal and a single kringle
domain from the apo(a)-related gene C was recently Lp(a) inhibits fibrinolysis
identified in plasma.22 It is not yet clear whether this
truncated genomic product has any substantial biolo- Lp(a) displays unequivocal growth-factor-like proper-

ties, promoting the growth of human umbilical veingical function in humans.
endothelial cells (hUVECs) in synergy with basic
fibroblast growth factor and insulin,40 and enhancing
the proliferation of human vascular smooth cellsThe benefits of Lp(a) (hVSMCs) in culture by inhibiting the activation of
transforming growth factor-b.41 These observationsAs nothing seems to happen casually in nature, we
are unsurprising, considering that apo(a) belongs toshould be able to identify at least one reasonable
a family of growth factors evolved from a commonexplanation for the appearance of Lp(a) in humans
ancestral kringle-containing serine protease, includ-and hedgehogs. There are several different human
ing the hepatocyte growth factor/scatter factorproteins and polypeptides whose biological functions
(HGF/SF), a potent effector in promoting growth,are yet unclear; however, it does not necessarily
movement, and differentiation of epithelia and endo-means that they are useless. This might be particularly
thelia, and the hepatocyte growth-factor-like/macro-true for Lp(a).
phage-stimulating protein (HGF1/MSP), an effector
of macrophage chemotaxis and phagocytosis.42Lp(a) promotes tissue repair

A conceivable scenario is summarized in Figure 1.
As a vascular injury occurs, the acute-phaseIt now seems very likely that Lp(a) offered an

evolutionary advantage to humans by promoting or response, concomitantly induced by the cellular
release of several mediators, including IL-6, stimu-accelerating the healing of wounds and the repair of

tissue injuries and vascular lesions. This hypothesis lates the hepatic synthesis of newly-formed apo(a)
molecules, thereby producing complete circulatingis supported by several lines of biological evidence.

Lp(a) behaves as an acute-phase reactant. The Lp(a) particles in the blood stream. Shortly afterwards,
Lp(a) accumulates at the site of the vascular injurysequence of the apo(a) gene contains several interleu-

kin 6 (IL-6)-responsive elements that enhance tran- as it binds to cellular receptors at the surface of
residual vascular cells, macrophages and platelets,scription of the gene.31 IL-6 generates a marked,

dose-dependent enhancement of apo(a) mRNA syn- to the exposed sub-endothelial matrix and to immob-
ilized fibrin. The large amount of apo(a) bound tothesis that leads to the accumulation of Lp(a) particles

in hepatocyte culture,32 and several prospective clin- the fibrin surface and, to a lesser extent, to platelets
and endothelial cells, inhibits the lysis of the clot.ical trials demonstrated significant rises in plasma

Lp(a) after inducing different forms of acute phase At the same time, the growth-factor-like properties
of Lp(a) promote vascular repair, and cell regenera-response in vivo.33

Due to the additional presence of apo(a), Lp(a) tion is ensured by the large amount of cholesterol
carried by the lipoprotein. In contrast to othercan be recognized by a broad variety of receptors

at the surface of endothelial cells, macrophages, cholesterol-rich lipoproteins, Lp(a) concentration is
not substantially influenced by changes in dietaryfibroblasts and platelets.34,35 Defensin, a peptide



G. Lippi and G. Guidi78

Figure 1. The role of Lp(a) in tissue repair.

habits. Therefore, it is conceivable that, given the As most plasminogen-derived kringles have a
different dietary habits of primates several million strong inhibitory effect on angiogenesis45,46 and
years ago, and the much lower plasma levels of total apo(a) kringle domains are highly homologous to
cholesterol and LDL-cholesterol, the amount of cho- plasminogen residues (77–100%),25 it is quite con-
lesterol carried by Lp(a) might have represented an ceivable that Lp(a) kringle fragments produced after
important source of substrates for cell regeneration physiological degradation of whole particles in vivo47

and growth. On this basis, Lp(a) could have been an have similar properties in antagonizing or reducing
essential component for tissue repair, whose primary growth and spread of cancers. However, the clinical
functions might have been the delivery of large relationship between Lp(a) and cancer is still rather
amount of cholesterol to peripheral cells and the obscure. The concentration of Lp(a) is commonly
promotion of regeneration following events such as reported to be significantly increased in cancer
injuries or inflammatory processes. Convincing sup- patients as compared to healthy controls, irrespective
port for this hypothesis was recently provided by of source and degree of malignancy of the tumour.48
Yano and colleagues, who described a markedly Taken together, this evidence might ascribe an
positive staining for Lp(a) closer to the surface of the essential role to Lp(a) in the biological fight against
fibrous cap, as well as in endothelial cells, and in malignancy. Among its various responses to cancer,
the extracellular space of small vessels underlying the organism might generate a substantial rise in
the fibrous cap of granulation tissues during wound Lp(a) concentrations, and the large content in kringle
healing.43

domains of apo(a) might then exert a powerful anti-
neoplastic effect. Although this hypothesis sounds

Lp(a) inhibits cancer growth and spread very attractive, there are some serious difficulties.
First, the recognized growth-factor-like functions ofO’Reilly and colleagues recently demonstrated that
Lp(a) on endothelial and smooth cells appear some-angiostatin, a 38 kDa fragment generated by cancer-
what incompatible with an eventual inhibitory effectmediated proteolysis of plasminogen, including
on angiogenesis; secondly, systemic administrationplasminogen kringle domains I through IV, inhibits
of intact kringle-containing proteins does not inhibitneovascularization of tumours and metastasis.44,45

neovascularization and growth of metastases andFurthermore, a recombinant form of plasminogen
primary tumours46 and, to our knowledge, no studykringle V domain, sharing high sequence homology
has yet investigated the hypothetical anti-neoplasticwith the four kringles of angiostatin, inhibits endo-

thelial cell migration.46 function of Lp(a) in vitro; finally, the current clinical
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observations require further support as they emerged effect on plasma Lp(a).52 Taken together, this evid-
ence suggests that, although vitamin C might repres-substantially from longitudinal studies—no definitive

prospective investigations are available at present. ent a powerful agent against heart disease, its
biological relationship with Lp(a) needs further
investigation.Lp(a) is a surrogate for ascorbate

According to the classic ‘unified theory’ of former
Nobel prize-winner Linus C. Pauling and Mathias Rath,

The pathogenicity of Lp(a)human occlusive cardiovascular disease is a degener-
ative condition induced by chronic ascorbate (vit- Lp(a) and atherosclerosis
amin C) deficiency, in which the large extracellular
deposition of Lp(a) represents a powerful biological Shortly after its discovery, raised levels of Lp(a) were

repeatedly associated with an increased incidencedefensive mechanism49,50 Thereby, Lp(a) is regarded
as a surrogate for ascorbate. Some evidence has of a variety of cardiovascular diseases, including

silent coronary artery disease (CAD), acute myocard-been found to support this hypothesis.
First, the original identification of Lp(a)- ial infarction (AMI), asymptomatic carotid athero-

sclerosis, stroke, and peripheral artery occlusiveimmunoreactive material was restricted to primates
and to the guinea pig, both of which have lost their disease (PAOD).53,54 Additionally, elevated Lp(a)

levels in plasma were shown to be strong indicatorsability to synthesize vitamin C de novo.49 On this
basis, Lp(a) might have replaced ascorbate in most of vasculogenic erectile dysfunction55 and retinal

artery occlusion.56 Usually, the Lp(a) familial excessspecies as a result of the evolutionary process.50 The
biological capability to synthesize ascorbate was represents the most frequent lipoprotein abnormality

observed in patients with premature myocardialprobably lost in primates and guinea pigs after the
introduction of substantial changes in dietary habits, infarction.57 Although retrospective case-control stud-

ies basically agreed in ascribing a substantial role topresumably towards foods containing larger amount
of vitamin C. Lp(a) in the pathogenesis of cardiovascular diseases,

this association emerged less clearly from prospectiveSecondly, adequate amounts of ascorbate
(40 mg/kg body weight/day) prevent the accumula- studies. In fact, whereas some prospective studies

reported raised levels of Lp(a) in patientstion of Lp(a) in the arterial wall and the consecutive
development of atherosclerosis in animal models.51 with CAD,58–64 others failed to demonstrate such an

association.65–67 Several explanations were proposedThirdly, Lp(a) might share some basic properties
with ascorbate. It was suggested that Lp(a) contributes for this apparent contradiction. Briefly, due to the

intrinsic genetic, structural and metabolic complexityto the strengthening of the extracellular matrix,
particularly in circumstances of ascorbate deficiency. of Lp(a), reliable conclusions drawn from the analysis

of results of Lp(a) investigations require the uncondi-At lower ascorbate concentrations, the instability of
the extracellular matrix resulting from impaired syn- tional application of rigorous and standardized proto-

cols.53–54,68 Furthermore, emerging evidencethesis of collagen and elastin might be temporarily
improved by a large deposition of Lp(a). Moreover, demonstrates that the atherogenic properties of Lp(a)

are intimately linked to those of LDL;69 accordingly,Lp(a) may delay lipid peroxidation.49,50 Finally, elev-
ated concentrations of plasma Lp(a) are usually the cardiovascular potential of Lp(a) appears more

substantial in hypercholesterolaemic subjects,70 andassociated with cardiovascular diseases, where the
overall incidence could be decreased by dietary substantial reductions in LDL-cholesterol (LDL-C)

attenuate the clinical threat of persistent elevationssupplementation with ascorbate.50 Similar observa-
tions have also been made in cancer and diabetes of Lp(a).71 From this perspective, although common

treatments for lowering LDL-C usually have no effectpatients.
To our knowledge, no other reliable clinical or on Lp(a), the identification of patients with raised

concentrations of both Lp(a) and LDL-C might bebiological evidence regarding strong relationships
between Lp(a) and ascorbate in humans has been crucial in clinical management, basically promoting

a more aggressive treatment of other concurrentpublished after the studies of Rath and Pauling.
Additionally, further studies failed to demonstrate modifiable risk factors. Some doubts remain about

the atherogenic potential of Lp(a) in Black popula-either Lp(a)-immunoreactive material in plasma or
apo(a) mRNA in the liver of the guinea pig, suggesting tions. In fact, although the concentration of Lp(a) in

African Americans is from two- to four-fold higherthat the material originally identified by Rath and
Pauling might be cross-reacting proteins or polypep- than in matched Caucasian Americans, the overall

atherogenic risk in the two racial groups appearstides.19 Finally, high-dose ascorbate supplementation
in patients with premature coronary heart disease comparable.

Several lines of biological evidence can be useddid not produce any clinically important lowering
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to explain the role of Lp(a) in the genesis, develop- explain the anti-fibrinolytic potential of Lp(a).99 A
considerable part of the anti-fibrinolytic propertiesment and complication of atherosclerotic lesions.

Lp(a) immunoreactive material can be selectively of apo(a) seems to reside in its molecular similiarity
to plasminogen.25 Lp(a) inhibits plasminogen bindingdemonstrated in the vascular wall of several arterial

vessels, including the aorta72, and coronary,73 cereb- and activation at the surface of stabilized fibrin,
endothelial cells and platelets in a dose-dependentral74 and peripheral arteries75; in those sites, the

relative amount of apo(a) deposition is significantly fashion, and the inhibitory effect on plasmin genera-
tion in vitro may be related to the size of the apo(a)related to the extent of atherosclerosis.74 Accordingly,

large amounts of Lp(a) can be demonstrated in particle, as smaller isoforms produce more pro-
nounced inhibition.100 Recently, Harpel and col-growing atherosclerotic plaques and vein grafts.76 In

growing atherosclerotic lesions, the accumulation of leagues demonstrated that the strength of the binding
between apo(a) and stabilized fibrin can be increasedapo(a) in degraded, free and intact (but oxidized)

forms appears to be preferential to that of other by incubation with homocysteine and other sulfhyd-
ryl compounds, such as cysteine, glutathione andapolipoproteins.77 The cellular uptake and degrada-

tion of Lp(a) follows several pathways, as Lp(a) N-acetylcysteine.101 This latter observation is particu-
larly attractive as it might provide a reliable synergyparticles bind to a wide variety of cellular recep-

tors78–84 and other unrecognized endosomal mem- between Lp(a) and homocysteine in the intricate
genesis of thrombotic disorders. Sangrar and col-brane proteins.80 Lipoprotein lipase enhances the

cell association of Lp(a) five-fold and the consequent leagues provided further insights into the inhibitory
effects of Lp(a) on plasmin generation, demonstratingcellular degradation by about threefold,85 whereas

the oxidative modification of Lp(a) results in avid that a recombinant form of apo(a) inhibits plasmin-
ogen binding to plasmin-modified fibrinogen sur-uptake by monocyte-macrophages.86 The affinity of

Lp(a) to triglyceride-rich lipoproteins and LDLs, and faces.102 Additional studies demonstrated that: (i)
Lp(a), especially in oxidized form, increases overthe strong molecular interactions with several com-

ponents of the endothelial matrix might further two-fold the endothelial synthesis and secretion of
PAI-1 in vitro, especially for the 2/2 PAI-1 geno-enhance the catabolism of Lp(a) by alternative, as

yet unclear pathways, promoting accelerated type;103,104 (ii) Lp(a) inhibits the secretion of t-PA
from human endothelial cells;105 and (iii) t-PA bindsinternalization and degradation of cholesterol-rich

lipoproteins.87 Recently, several biological studies reversibly to surface-bound Lp(a) inhibiting the tPA-
mediated activation of Glu-PLG.102,106 The recentlydemonstrated that Lp(a): (i) displays various growth

factor-like properties for several vascular cells in observed interaction between recombinant apo(a)
and beta2-glycoprotein I39 raises new speculationsvitro;40,41 (ii) triggers chemotaxis in human mono-

cytes;88,89 and (iii) enhances the expression of inter- about the active participation of Lp(a) in thrombotic
and autoimmune processes, and deserves furthercellular adhesion molecule (ICAM)-1 in cultured

hUVECs.90 Finally, increased Lp(a) levels are associ- in-depth investigation.
ated with a selective impairment of vasodilator
capacity of receptor-mediated endothelial stimuli,
contributing to the pathogenesis of myocardial Conclusions
ischaemia.91

Only few animal species have developed the ability
to synthesize Lp(a) along their evolution: a subset ofLp(a) and thrombosis
primates and the insectivore hedgehog. According
to a recent theory, the phylogenetic evolution of theRaised Lp(a) concentrations have been observed in

patients with several thrombotic occlusive disorders hedgehog apo(a)-like gene can be dated back to
about 80m years ago, whereas the appearance ofsuch as pulmonary embolism,92 central retinal vein

occlusion93 and interference in placental circulation apo(a) in primates occurred much more recently,
probably during the recent evolution of thesecausing fetal growth retardation.94,95 Lp(a) levels are

strong predictors of both occlusive events following species.18 Additionally, the hedgehog apo(a)-like
gene shows substantial distinctive features in termsvascular and endovascular surgical procedures96 and

development of thrombotic episodes in patients with of structure and evolutionary history from human
apo(a); in fact the former gene encodes a proteinsevere rheumatological diseases.97 Finally, the con-

vergence of the strong atherogenic and thrombotic composed of highly repeated copies of a plasmin-
ogen kringle III-like domain but is completely lackingpotentials of Lp(a) plays a pivotal role in the

complication of atherosclerotic lesions, as usually the sequences encoding the plasminogen preactiva-
tion peptide, for plasminogen kringles I, II, IV and Voccurs after rupture or ulceration of atherosclerotic

plaques.98 and for the protease domain.18 It is well known that
the restricted availability of biological substrates andSeveral plausible mechanisms were proposed to
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