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Sudden cardiac death: the lost fatty acid hypothesis

M.F. OLIVER

Summary

Evidence that an excess of plasma free fatty acids
(FFA) might lead to primary ventricular fibrillation
and sudden cardiac death has hardened over the
36 years since the hypothesis was proposed.
When the sympathetic nervous system is stimulated
during the onset of an acute coronary syndrome,
catecholamine-induced tissue lipolysis occurs,
with a surge of plasma FFA. This may overload
the acutely ischaemic myocardium and impair
glucose utilization. Myocardial oxygen consump-
tion can increase in regional areas of ischaemia,
and could lead to abnormal electrophysiological

conduction and refractoriness, with irreversible
ventricular arrhythmias. Efforts to combat the
adverse effects of excess FFA include beta-
blockade, increasing glucose availability and
extraction, or inhibition of lipolysis. This last
approach appears promising, but no method has
yet been clearly shown to prevent primary
ventricular fibrillation or sudden cardiac death.
The hypothesis remains viable. More research is
needed to derive treatment that can be applied as
soon as the onset of acute myocardial ischaemia is
suspected.

Introduction

Some ideas are lost because they never really see

the light of day. But 36 years ago, the free fatty acid

(FFA/NEFA) hypothesis1 did, although subsequently

it has been largely lost. Yet it remains viable. Renewal

of the idea is appropriate today, since knowledge

about the causes and prevention of ventricular

fibrillation has advanced greatly. Ventricular fibrilla-

tion is the commonest cause of sudden unexpected

death in most apparently healthy people, as well as in

those with declared coronary heart disease.
Two potentially irreversible events occur in the

myocardium during an ‘acute heart attack’. One

is that there is massive and sudden impedance

of blood flow, whether from coronary thrombosis

or spasm, reducing available oxygen for normal

oxidative metabolism. The other is that profound

changes in systemic metabolism occur, and these

may result in the myocardium no longer receiving

the optimum balance of energy substrates allowing

it to contract and function normally. The combina-

tion may lead to lethal ventricular fibrillation.

Catecholamine activity

The catecholamine surge which occurs with the

acute stress, fear (the angor animi) and pain of a

developing coronary syndrome might, in certain

circumstances, have deleterious effects on myocar-

dial metabolism, making the ischaemic myocardium

vulnerable to the local development of electro-

physiological changes leading to primary ventricular

fibrillation.1

Norepinephrine, released from postganglionic

sympathetic nerves, binds to adrenergic receptors

in myocardial cells and in the media of coronary

arterioles. A moderate increase in catecholamine

activity will augment inotropy and help to maintain
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contractility in the face of impaired myocardial
oxygenation. But excess catcholamine activity
may also lead to profound systemic metabolic
responses that increase myocardial energy
demands, with deleterious effects on myocardial
function.

Normally, at rest, efficient aerobic myocardial
metabolism depends on the relative proportions of
free fatty acids that account at rest for 60–70% of
ATP (glucose accounting for 20–25% of ATP),
and lactate and ketones. Fatty acid oxidation uses
more oxygen per mole than glucose. This is easily
met in aerobic conditions, but less so or not at
all when oxygen supply is reduced. The cell’s
requirements for ATP are set by the external
workload performed by the heart. The rate of ATP
breakdown is balanced by ATP synthesis. This
cycle depends on the efficiency of myocardial
oxygen consumption, and may be imperilled
during haemodynamic or catcholamine-induced
stress. Reduced coronary flow results in an
abnormal metabolic response, aerobic ATP forma-
tion is impaired and regional myocardial ischaemia
occurs. During ischaemia, catcholamine stimulation
of tissue lipolysis leads to more FFA and less glucose
being presented to the myocardium. Lactate and
pyruvate are not utilized.

Plasma norepinephrine concentrations increase
within minutes of the onset of an acute coronary
syndrome2–4 and remain elevated for up to 20 h,
depending on the severity of the response to stress.
This increases circulating FFA concentrations.5,6

In the liver, it increases glycogenolysis but decreases
pancreatic insulin secretion.7 During the first hours
of acute myocardial infarction, plasma FFA rise very
rapidly and can be double or treble resting values.6

The turnover rates for glucose and free fatty acids
are independently increased.8 Plasma cortisol and
cyclic AMP concentrations also rise rapidly.2 While
these changes lead to some increase in plasma
glucose concentrations, transport of glucose into
myocardial cells is critically dependant on insulin
availability, and the surge in catecholamines
decreases pancreatic beta-cell production of insu-
lin.9 A relative glucose debt can occur locally,
although this may be compensated for temporarily
by local release of adenosine, stimulating myocar-
dial glucose utilization.

Free fatty acids and primary
ventricular fibrillation

In 1963, when studying electrophoretic analyses
of lipoproteins, we observed that a fast
moving fat-staining band, which we identified as

albumin-bound free fatty acids, was intense in
patients with acute myocardial infarction.
Subsequently, we reported that an increase in
plasma FFA also occurred in shock, renal colic,
non-myocardial causes of pain and in cerebral
infarction.6 We regarded the rise in plasma FFA
as a universal non-specific response to stress, or
a catecholamine-induced response.

Patients with acute myocardial ischaemia who
had particularly high plasma concentrations of
FFA also had an increased incidence of ventricular
arrhythmias and ventricular fibrillation.10 Our pro-
posal that these were related1 was later confirmed
by others.11 More recent, indirect confirmation
has come from the Paris Prospective Study of
5250 men.12 After 22 years of follow-up, an increase
in circulating FFA at baseline examination was
significantly related to subsequent sudden death,
defined as natural death that occurred within 1 h
after onset of acute symptoms. The authors regard
this correlation as a manifestation of increased
adrenergic tone. Furthermore (as we showed for
ventricular fibrillation) the risk of sudden death
increased with increasing values of FFA. There was
no correlation in the Paris Study between plasma
FFA concentrations and other causes of fatal
myocardial infarction.

The precise mechanism through which profound
local metabolic gradients in ischaemic myocardial
cells lead to arrhythmias is still unclear.
Study of anaesthetized dogs following coronary
occlusion, using three-dimensional maps of regional
metabolism, blood flow and epicardial activation at
the time of early ventricular arrhythmias, suggested
that inhomogenieties of glycolytic activity
within a central ischaemic area might be of
critical importance in determining pathways of
re-entrant excitation, conduction and hence
arrhythmogenesis.13

The possibility that, in the presence of myocardial
ischaemia, an increase in plasma catecholamines
alone might induce ventricular fibrillation needs
consideration. There is compelling evidence,
however, to suggest that the concurrent rise in FFA
is a primary intermediate cause. The intravenous
injection of long-chain saturated fatty acids into
anaesthetized healthy dogs induces ventricular
arrhythmias.14 Inhibition of adipose tissue lipolysis
by a nicotinic acid analogue, which reduces
the incidence of ventricular arrhythmias,15 is not
associated with reduction of cyclic AMP or cate-
cholamine concentrations.16 Heparin-induced
plasma lipolysis can also lead to ventricular fibrilla-
tion in dogs17 and heparin-induced ventricular
arrhythmias are both prevented and reversed
by protamine sulphate. Heparin activates plasma
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chylomicron and triglyceride lipolysis and, in the
presence of postprandial hyperlipaemia, leads to
high plasma FFA concentrations. Parenthetically,
the use of heparin in the management of an acute
coronary syndrome might, if there is concurrent
postprandial lipaemia, favour the development of
ventricular fibrillation. Also, perfusion of isolated rat
hearts with high-molar ratios of albumin-bound
fatty acids has a direct arrhythmogenic effect.18,19

Lastly, there is the positive relationship between
baseline FFA levels and subsequent sudden cardiac
death in the Paris Prospective Study12 referred
to above.

Free fatty acids and ischaemic
myocardial metabolism

Myocardial ischaemia occurs regionally according
to the extent of coronary arteriole underperfusion
and local reperfusion. The areas affected may be
quite small, and probably change rapidly, since
myocardial energy kinetics are in continuous flux.20

The availability and utilization of substrates locally
is unpredictable. The fatty acid uptake of the
myocardium can determine myocardial oxygen
requirements.21 An excess of FFA in some under-
perfused areas could be temporarily deleterious and
increase local myocardial oxygen consumption
patchily, leading to the development of gradients
in substrate utilization and electrolyte transfer, with
temporary interruption of the distribution of action
potential as well as impairment of contractility.22,23

Increased FFA suppress glucose oxidation through
inhibition of pyruvate dehydrogenase.24 In severely
hypoxic localized areas of the myocardium,
impaired glucose utilization and uptake, due to
insulin suppression, may worsen the oxygen-
wasting effects of increases in myocardial FFA
concentrations.21,25,26 Energy wastage due to
futile cycling of unproductive reactions, such as
repeated lipogenesis and lipolysis,27 may also
contribute and will vary regionally. When beta-
oxidation is already impaired, all these metabolic
changes may increase myocardial oxygen consump-
tion critically.

Circulating FFA are bound with various degrees of
affinity to albumin. Saturation of the two main
binding sites occurs at about 1.2 mmol/l, corre-
sponding to a free fatty acid/albumin molar ratio
of 42.0. There is an exponential tissue uptake of
FFA above this level,28 and it is probable that
when higher molar ratios are reached, the uptake by
ischaemic areas of the myocardium is increased,
with a greater risk of ventricular fibrillation. In
isolated rat hearts, FFA are directly arrhythmogenic

even in the absence of ischaemia, if the molar
ratio to albumin is high.18 The importance of
the molar relationship between FFA and albumin
is well illustrated by the demonstration that
lipid-free albumin infusions that reduce the free
fatty acid/albumin ratio simultaneously decrease
the extent of ST elevation in dogs with coronary
occlusion.29

Fatty acid toxicity

The mechanisms of fatty acid toxicity are
complex.7,24,30,31 A membrane detergent effect has
been postulated.1 A regional excess of fatty acids
may lead locally to peroxidation of membranes with
dispersion of membrane potentials, and activation
of cytokines. Plasma FFA enter cardiomyocytes
and thence into the mitochondria where they may
uncouple mitochondrial respiration.31 Uncoupling
proteins lower the proton gradients by allowing
protons to re-enter the mitochondrial matrix with
the production of heat rather than ATP.32 During
ischaemia, beta-oxidation of lipids in mitochondria
may also be inhibited, with accumulation of
acylcarnitine and acyl-CoA. This could lead to
cytosolic Ca2þ overload, with the occurrence of
electrical re-entry and arrhythmias.33 The accumu-
lation of detergent CoA derivatives and lysophos-
pholipids resulting from instability of membrane
lipids also favours the development of arrhythmias.
FFA may inhibit the Naþ, Kþ, ATPase pump, leading
to high intracellular sodium and calcium.34 Excess
FFA may lead to accumulation of extracellular Kþ,35

and shortening of action-potential. Additionally, the
activity of the insulin-responsive glucose transporter
(GLUT4) falls in the presence of excess FFA.32,36

Thus, elevated FFA and intracellular lipid reduce
insulin-stimulated glucose transport, mediated by
a decrease in GLUT-4 translocation. High FFA
levels also impair capillary recruitment and
acetylcholine-mediated vasodilatation.37

Not all fatty acids behave similarly, and not all are
pro-arrhythmic. Some polyunsaturated fatty acids
have an anti-arrhythmic action. There have been
consistent observations that n-3 polyunsaturated
fatty acids from fish oils (particularly eicosapentae-
noic, EPA, and docosahexaenoic, DHA, acids)
decrease the tendency of experimentally-induced
myocardial ischaemia to develop ventricular fibril-
lation38,39 and that they reduce the incidence
of sudden cardiac death.40–43 Three large clinical
trials have supported the evidence that n-3 fatty
acids prevent sudden cardiac death,44–46 although,
recently, a contradictory report from the authors
of one of these was negative. In DART-2, the risk
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of cardiac death was higher among subjects advised
to take oily fish than among those not so advised;
and was even greater for sudden cardiac death.47

This contradictory report may relate to the use of
EPA capsules, leading to excess fatty acid storage
in adipocytes, with very high plasma FFA when
catecholamine stimulation occurs.

The blood levels of n-3 fatty acids taken at
baseline were found in a 17-year follow-up of the
Physicians Health Study to be inversely related to
subsequent sudden cardiac death.43 It might there-
fore be argued that populations with an adipose
polyunsaturated/saturated (P/S) ratio of <1.0, such as
the Scots,48 would be more liable to sudden cardiac
death than Mediterranean races, where the P/S ratio
is much higher. Additionally, in patients who had
been taking EPA- and DHA-rich oils, there were
fewer carotid artery plaques with thin fibrous
plaques and signs of inflammation, compared with
patients who had been taking n-6 fatty acids,
suggesting that n-3 fatty acids also stabilize athero-
sclerotic plaques.49

The anti-arrhythmic effects of n-3 fatty acids may
be explained by their effect on several basic
electrophysiological mechanisms. They can lead to

Naþ channel inhibition and prolongation of refrac-
tory periods in cardiomyocytes. This might interfere
with re-entry circuits. Polyunsaturated fatty acids,
not exclusively n-3, appear to act through stabilizing
cardiac myocytes by modulating conductance of
ion channels in the sarcolemma, particularly the
fast, voltage-dependent sodium current and the
L-type calcium currents, though other ion currents
are also affected. The primary site of action may
be on the phospholipid bilayer of the heart cells
in the microdomains through which the ion
channels penetrate the membrane bilayer, rather
than directly on the channel protein itself.
These polyunsaturated fatty acids then alter
allosterically the conformation and conductance
of the channels.

All prostaglandins and thromboxanes produced
from arachidonic acid (n-6) were found to be
potent arrhythmic agents, whereas none of the
comparable 3-series cyclooxygenase products of
eicosapentaenoic acid were arrhythmogenic.50

Also, in contrast to mono-unsaturated and n-6 fatty
acids, saturated fatty acids such as palmitate
and stearate may induce apoptosis in myocardial
mitochondria.51

Figure 1. The main changes that occur in peripheral and myocardial metabolism during the development of acute

myocardial ischaemia. CoA, coenzyme A; FFA, free fatty acids; TG, triglycerides. Reprinted from Oliver MF, Metabolic

Causes and Prevention of Ventricular Fibrillation during Acute Coronary Syndromes, Am J Med 2002; 112:305–11,
Copyright 2002, with permission from Excerpta Medica, Inc.
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Therapeutic options for the
prevention of sudden cardiac death

There would appear to be four possible ways of
minimizing the adverse effects of high plasma FFA
on myocardial ischaemic tissue during an acute
coronary syndrome. One is to reduce adrenergic
tone. Another is to reduce or inhibit adipose

lipolysis. The other two are to act through the
‘glucose hypothesis’,6 either by augmenting myo-
cardial glycolysis, or by increasing myocardial
uptake of glucose by infusing high concentrations
of glucose with insulin and potassium (GIK).

b-adrenergic blockers

The obvious way to reduce hyperadrenergic tone is
to use b-adrenergic-blocking drugs and these have

been shown to reduce the incidence of ventricular
fibrillation.52,53 A recent comprehensive review
confirms the cardioprotective and anti-arrhythmic
effects of long-term treatment with b-blockers, and
b-blocking drugs with a high degree of lipophilicity

may be the most effective.54 However, in the earliest
stages of an acute coronary syndrome, hypotension
and reduction of the inotropic activity of catecho-
lamines might be harmful. The latter is essential for
maintaining myocardial contractility, and it is no

surprise that a recent very large meta-analysis
(COMMIT) has demonstrated that, even in low risk
patients, b-adrenergic blockade was associated with
an increased incidence in early cardiogenic
shock.55 Also, when adrenergic activity is severely

antagonized, insulin secretion is reduced: a poten-
tial metabolic disadvantage to the ischaemic
myocardium.

Anti-lipolytic agents

If we wish to redress the imbalance of substrates
reaching the ischaemic myocardium during the
acute phase, inhibition of the release of FFA from
adipose tissue is an approach needing more serious
study. Nicotinic acid has been known for many

years to have such an effect,56 and has now been
shown to bind to a specific protein receptor in
adipocyte membranes.57 Interest in the nicotinic
acid receptor might allow the development of

powerful rapidly-acting anti-lipolytic drugs, and
needs more research.58 Such a drug might be
given immediately by intravenous or intramuscular
injection when the patient with a developing
acute coronary syndrome is first seen, and repeated

hourly for 6–10 h. It would have to have no other
effects, and no rebound elevation of FFA when
stopped.

Nicotinic acid should not be used at the onset of
an acute coronary syndrome, since it could lead to
profound hypotension, but its analogues deserve
study. b-pyridyl-carbinol both inhibits lipolysis and
reduces the severity and extent of myocardial
ischaemic injury during experimental coronary
occlusion.59 Most derivatives are however either
too weak or too slow in action to lower raised FFA
rapidly and sufficiently. A small clinical trial of an
analogue of nicotinic acid reduced elevated plasma
FFA rapidly and was associated with fewer episodes
of ventricular arrhythmias,15 but also led to gastric
histamine release and tachyphylaxis. More encoura-
gingly, nicorandil, a nicotinamide ester, has been
studied because of its putative preconditioning
effect against myocardial ischaemia. It reduces FFA
concentrations and opens ATP Kþ channels. A
recent large randomized trial (IONA), demonstrated
a significant reduction (�21%) in acute coronary
syndromes and fewer cardiac deaths over 1.6 years
of follow-up in 5126 patients with known coronary
heart disease.60 Data concerning sudden cardiac
deaths are not reported. There were more gastro-
intestinal symptoms in the treated group.
Another possibility is the development of A1

adenosine receptor agonists that antagonize
catecholamine-induced lipolysis without producing
adverse haemodynamic effects.61

Augmentation of myocardial utilization
of glucose

Another therapeutic option is to adopt the ‘glucose
hypothesis’62 by stimulating the myocardium to
increase glucose utilization preferentially. This can
be done by direct stimulation of pyruvate dehydro-
genase, the rate-limiting enzyme for glucose
oxidation.
One way to approach this is to try to inhibit FFA

oxidation.63–65 Recently, several drugs have been
developed and they have the advantage of being
devoid of haemodynamic effects. Piperazine deri-
vatives, such as trimetazidine66 and ranolazine,67

partially inhibit fatty acid b-oxidation. Trimetazidine
has cardioprotective effects in in vitro models of
ischaemia, and improves exercise tolerance in
patients with chronic angina.68 Ranolazine was
effective in chronic stable angina in preliminary
clinical trials,69,70 and also has anti-arrhythmic
properties.71

L-carnitine and proprionyl L-carnitine also stimu-
late glucose oxidation secondary to an increase
in pyruvate dehydrogenase activity. Drugs which
stimulate their action might theoretically to be
of use.72 Dichloroactate has such an effect.
Compounds which decrease the transport of
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acylcarnitines across the inner mitochondrial mem-
brane need more study. None of these drugs has
yet been clearly shown to benefit myocardial
ischaemia.

Glucose and insulin

An alternative approach to the ‘glucose hypothesis’
is the administration of glucose/insulin/potassium
(GIK). Insulin increases myocardial glucose uptake,
and promotes glycogen storage. This can serve as a
source of glycolysis, thereby increasing adenosine
triphosphate availability. Since insulin also reduces
the mobilization of FFA from adipocytes, a further
benefit of GIK is to reduce the concentration of
circulating FFA. This will occur soon after initiation
of the infusion and, if is started early (say, within
6 h of the onset of myocardial ischaemia) the
incidence of ventricular fibrillation should be
reduced.

Overall, the results of GIK trials have not been
impressive. The focus has been on long-term
survival from 1 month to 3 years, and not on the
incidence of primary ventricular fibrillation or
early sudden death. In most, the time of starting
the infusion has been too late to benefit acutely
ischaemic myocardial metabolism. The results
been inconsistent, possibly because the concentra-
tions of GIK used did not reduce FFA levels
sufficiently.

There have been many GIK trials, and five require
mention. The ECLA (Estudios Cardiologicos
Latinoamerica)73 reported a better 1-year prognosis
for patients receiving a high-dose regimen. Unlike
most earlier trials, the dose used was at a level
that would be expected to suppress plasma FFA
concentrations, although these data were not
reported. But there was no difference in the ECLA

trial regarding in-hospital mortality between high-
dose and low-dose infusions. The much larger
CREATE-ECLA controlled trial of GIK in 20 201
patients with ST-segment elevation acute myocar-
dial infarction (STEMI) had no impact on mortality,
cardiac arrest or cardiogenic shock.74

In the DIGAMI (Diabetes Mellitus, Insulin
Glucose Infusion in Acute Myocardial Infarction)
trial,75 after 3.5 years the absolute mortality in those
receiving intensive insulin at the time of the
myocardial infarct was reduced by 11%. The main
benefit in those who received intensive subcuta-
neous insulin was evident within the first month.
In those who had not required insulin before
hospital admission, in-hospital mortality was
reduced with insulin by 58% (p<0.05). Whether
or not this benefit was also present within the first
few hours or days is not reported. The effect was

most apparent in patients who had not previously
received insulin treatment and who were at a low
cardiovascular risk. A second larger trial (DIGAMI-2)
in type-2 diabetic patients failed to produce
adequate control of HbA1c, and concluded that
acutely-introduced long-term insulin infusions
did not improve survival in patients with acute
myocardial infarction.76

The results of the GIK trials are contradictory
and not encouraging. Interpretation of these various
trial results is often difficult. How adequate was
the regimen used? For example, none report FFA
concentrations. The key for the success of GIK is
likely, from the metabolic point-of-view, to start a
high-dose regimen in high-risk patients early, e.g.
while in the ambulance transporting patients to
hospital. It is encouraging, therefore, that a recent
Dutch study with early administration (2.5 h after
the onset of symptoms) of GIK infusions, mostly in
conjunction with angioplasty, reduced mortality in
those without heart failure.77

An editorial78 reviewing this particular metabolic
approach to myocardial conservation concluded:
‘the present data are not firm nor extensive enough
to support the routine use of GIK in patients with
acute myocardial infarction’. This is still true.

Reasons for the fatty acid
hypothesis being lost

There are several reasons why the proposal that
excess elevation of plasma FFA accompanying
acute myocardial ischaemia may lead to primary
ventricular fibrillation has largely been forgotten.
The main one has been the lack of interest in
and understanding of the vital role of sustaining
myocardial energy sources during acute ischae-
mia.20,25,31,79 Ischaemic myocardial metabolism
has recently been described as ‘the lost child of
cardiology’.79 Cardiologists and interventionists
have rightly focussed their skills on the imperative
of using thrombolysis and angioplasty to restore
myocardial blood supply. This is their immediate
therapeutic manoeuvre, and it has been very
successful.

Little enthusiasm has been shown for the potential
use of metabolic control during an acute coronary
syndrome to prevent ventricular fibrillation and
cardiac death. While theoretically beneficial, mod-
ulation of the hyperadrenergic state by b-adrenergic
blockers can have serious haemodynamic compli-
cations during the acute phases, and is not an
approach to be recommended. The contradictory
and mostly negative results of the GIK trials has
reduced the interest of many in the effectiveness
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and need to support aerobic metabolism during
acute ischaemia.

Drugs that will have a rapid inhibitory effect
on tissue lipolysis are my preferred choice,80 but
both intellectual and actual investment in their
development has been disappointing. The case for
their development is strong; as shown, hopefully,
by this commentary.

Whatever the future developments, there is
always the difficulty of providing appropriate treat-
ment at the earliest stages of a developing coronary
syndrome. Primary ventricular fibrillation is most
common in the first hour after the onset of an acute
coronary syndrome, and at a time when it is all
but impossible to treat the patient. Many who die
unexpectedly and suddenly are not previously
identifiable as being specifically at risk for primary
ventricular fibrillation: only 10% of such victims
have a high-risk profile.81 Most do not declare
themselves early enough. These deaths often occur
where there are no available emergency facilities.
But the risk of primary ventricular fibrillation is
increased for at least 6 h after the onset of an acute
coronary syndrome and there is thus a window of
opportunity if the right treatment were available.

So far, little of practical value has been derived
from the original concept that a metabolic cause
may lead to fatal ventricular fibrillation during acute
myocardial ischaemia. The paradox is that the fatty
acid hypothesis is still sound. Lacking appropriate
drugs, it has not been formally tested. Like patients
with ventricular fibrillation, it needs resuscitation.
And let us not forget that sudden unexpected death
accounts for one-fifth of all deaths.
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